See a bracket - deal with it first!!

$$
\begin{gathered}
5(x+2)=15 \\
5 x+10=15 \\
5 x=5 \\
x=1
\end{gathered}
$$

To simplify surds like $\sqrt{ } 50$, you can split a surd into its factors

When splitting, look for square numbers

$$
\begin{gathered}
\sqrt{ } 50=\sqrt{ } 25 x \sqrt{ } 2=5 \sqrt{ } 2 \\
\sqrt{ } 98=\sqrt{ } 49 x \sqrt{ } 2=7 \sqrt{ } 2 \\
\sqrt{ } 50+\sqrt{ } 98=5 \sqrt{ } 2+7 \sqrt{ } 2=12 \sqrt{ } 2
\end{gathered}
$$

To find a \% increase, you must do
\% increase $=$ increase/original $\times 100$
e.g. To increase from 7 to 12
$\%$ increase $=5 / 7 \times 100=71 \%$

To increase by $5 \%$, multiply by 1.05

To decrease by $17 \%$ multiply by 0.83

If a surd is on the bottom of a fraction, get rid of it!!

If a surd is on the bottom such as $\sqrt{ } 37$, then multiply top and bottom by $\sqrt{ } 37$

$$
\frac{7}{\sqrt{5}}=\frac{7 \sqrt{5}}{5}
$$

If given that after a $22 \%$ decrease something costs $£ 5$
then
we know $78 \%=£ 5$,
then we find $1 \%=6.41 \mathrm{p}$
and then $100 \%$ to get
original price $=£ 6.41$

Difference of two squares

$$
\begin{aligned}
x^{2}-25 & =(x+5)(x-5) \\
4 x^{2}-25 & =(2 x+5)(2 x-5)
\end{aligned}
$$

Difference of two squares

$$
\begin{aligned}
53^{2}-47^{2} & =(53+47)(53-47)=600 \\
95^{2}-5^{2} & =(95+5)(95-5)=9000
\end{aligned}
$$

Solve inequalities like equations but remember the sign at the end!

Only change sign if multiplying/dividing by a negative!

When substituting follow the laws of BIDMAS ie Brackets
Indices (powers)
Division/ Multiplication
Addition/ Subtraction

$$
1 / 2 y^{2} \text { when } y=4 \text { is } 1 / 2 \text { of } 4^{2}=1 / 2 \text { of } 16=4
$$

To rationalise a denominator, multiply top and bottom by the surd on the bottom!

$$
\frac{3}{\sqrt{5}}=\frac{3 \sqrt{5}}{\sqrt{5} \sqrt{5}}=\frac{3 \sqrt{5}}{5}
$$

A negative power means 1 over what it would be if it was positive!
A posh word for one over is reciprocal.

$$
\begin{gathered}
2^{-2}=1 / 4 \\
5^{-3}=\frac{1}{125}
\end{gathered}
$$

When we raise a power to a power, multiply the powers!

$$
\left(x^{2}\right)^{3}=x^{6}
$$

If number inside, put that to power outside

$$
\begin{gathered}
\text { also! } \\
\left(3 x^{4}\right)^{2}=9 x^{8}
\end{gathered}
$$

Power $1 / 2$ means square root Power ${ }^{\frac{1}{3}}$ means cube root

You can't add surds like this: $\sqrt{2}+\sqrt{3}=\sqrt{5}$
Power ${ }^{\frac{2}{3}}$ means cube root then square
Only add if they're the same: $\sqrt{5}+\sqrt{5}=2 \sqrt{5}$
Power $3 / 4$ means do fourth root then cube

To add/ subtract fractions, get a common denominator

$$
\frac{3}{5}+\frac{7}{15}=\frac{9}{15}+\frac{7}{15}=\frac{16}{15}=1 \frac{1}{15}
$$

$$
\frac{3}{5}-\frac{7}{15}=\frac{9}{15}-\frac{7}{15}=\frac{2}{15}
$$

If using quadratic formula beware of negatives!

$$
\text { Solve }{ }^{x^{2}+y^{2}=10, x+y=4}
$$

But $\mathrm{y}=4-\mathrm{x}$ so substitute linear into quadratic

$$
\begin{aligned}
& x^{2}+(4-x)^{2}=10 \\
& x^{2}+16-8 x+x^{2}=10 \\
& 2 x^{2}-8 x+6=0 \\
& x^{2}-4 x+3=0 \\
& (x-1)(x-3)=0 \\
& x=1,3 y=3,1
\end{aligned}
$$

Before calculating with fractions turn any mixed fraction into an improper one!
$1 \frac{3}{5} \div \frac{2}{7}=\frac{8}{5} \times \frac{7}{2}=\frac{56}{10}=5 \frac{6}{10}=5 \frac{3}{5}$

Never use factorisation or quadratic formula to solve until what you want to solve equals zero!

IDENTITY - $\equiv 3$ lines
EXPRESSION - no equality sign
FORMULA - more than one unknown, would need information about at least one variable to find others,

EQUATION - one unknown that can be solved

$y=2^{x}$ looks like this, as does $\mathrm{y}=$ anything to the power x DRAW IT ACCURATELY BY PLOTTING POINTS!!

| When working with algebra use brackets to stop silly mistakes <br> Always factorise or cancel when you can!! | On a number line a filled in circle means $\geq$ or $\leq$ <br> On a number line an open circle means $>$ or $<$ |
| :---: | :---: |
| Compound interest is accumulated interest. <br> If a bank account has $£ 1000$ and interest is $9 \%$ then after 5 years the account will have $\begin{gathered} 1000 \times 1.09 \times 1.09 \times 1.09 \times 1.09 \times 1.09 \text { or } \\ 1000 \times 1.09^{5} \end{gathered}$ | When rearranging <br> Use brackets <br> Cancel if you can <br> Factorise if you can <br> Always, when making something the subject, make sure you have it alone on one side only. <br> To do this, make sure you start with the intention of getting everything with your subject in together!! |
| Gradient = up over across | Standard form- <br> If a number isn't in standard form rewrite first part in standard form as below $0.000000000967 \times 10^{14}=9.67 \times 10^{-10} \times 10^{14}=9.67 \times 10^{4}$ |
| A LINE WITH POSITIVE GRADIENT LOOKS LIKE <br> THIS! <br> Eg $y=2 x+3$ | A LINE WITH NEGATIVE GRADIENT LOOKS LIKE THIS! <br> Eg $y=-x, y=-4 x-5$ |

## A QUADRATIC GRAPH SUCH AS $y=x^{2}$ is $u$

 SHAPED.If we have a negative quantity of $x^{2}$ the graph is
n shaped.


To multiply fractions, multiply top by top and bottom by bottom

$$
\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}
$$

To divide fractions, flip the second fraction and multiply

$$
\frac{3}{5} \div \frac{2}{3}=\frac{3}{5} \times \frac{3}{2}=\frac{9}{10}
$$

When using mixed fractions, convert into improper fractions first

$$
1 \frac{3}{4} \div 3 \frac{2}{7}=\frac{7}{4} \div \frac{23}{7}=\frac{7}{4} \times \frac{7}{23}=\frac{49}{92}
$$

With trial and improvement, when you know the answer is between two 1 decimal place values check the middle value to ensure which of the values is closer.

SOLVE $x^{2}-3 x=7$ to $1 d p$

| $x$ | $x^{2}-3 x$ | comment |
| :---: | :---: | :---: |
| 4 | 4 | Too low |
| 5 | 10 | Too high |
| 4.5 | 6.75 | Too low |
| 4.6 | 7.36 | Too high |
| 4.55 | 7.0525 | Too high |

So answer lies between 4.5 and 4.55 so is 4.5 to 1dp

When we multiply powers of the same number or variable we add the powers

$$
\begin{aligned}
x^{2} \times x^{5} & =x^{7} \\
3 y^{8} \times 5 y^{2} & =15 y^{10}
\end{aligned}
$$

The equation of any straight line can be written in the form
$y=m x+c$
$\mathrm{m}=$ gradient (increase in $\mathrm{y} /$ increase in x )
$\mathrm{c}=\mathrm{y}$ intercept (the y intercept can be found at the coordinate (0, something))

A number in standard form $=\mathrm{a} \times 10^{b}$ where $a$ is $>1$ and $<10$

To change numbers into standard form change the original number into standard form first

$$
50 \times 10^{-3}=5 \times 10 \times 10^{-3}=5 \times 10^{-2}
$$

$$
0.07 \times 10^{5}=7 \times 10^{-2} \times 10^{5}=7 \times 10^{3}
$$

To draw graphs, plot points by choosing the x coordinate and using the rule to work out the $y$ coordinate.

3 hours 20 minutes is not 3.2 hours
Anything to the power zero is 1 !

$$
\begin{aligned}
& 1^{0}=1 \\
& x^{0}=1
\end{aligned}
$$

It is 3 hours and $\frac{20}{60}$ of an hour which is $3 \frac{1}{3}$ hours or 3.333333333333333333333333333 hours

To complete the square halve the coefficient of $x$ and take away the square from the constant

$$
\begin{gathered}
x^{2}+8 x=(x+4)^{2}-16 \\
x^{2}-6 x-16=(x-3)^{2}-9-16=(x-3)^{2}-25
\end{gathered}
$$

$$
\begin{aligned}
& \frac{50}{0.2}=\frac{500}{2}=250 \\
& \frac{120}{0.3}=\frac{1200}{3}=400 \\
& \frac{16}{0.25}=\frac{64}{1}=64
\end{aligned}
$$

$$
\begin{aligned}
& 3 x+2 y=9 \\
& 4 x+4 y=16
\end{aligned}
$$

Multiply top equation by 2 to get equal amounts of $y$ top and bottom

$$
6 x+4 y=18
$$

$$
4 x+4 y=16
$$

Then take bottom equation from top to get $2 x=2$ so $x=1$
Then put $x=1$ into one of the equations to find $y=2$

In proof, let any integer be n
Prove that the sum of the square of an odd number and the square of an even number is 1 more than a multiple of 4

Then 2 n will always be even
And $2 n+1$ will always be odd

To solve a quadratic equation, use the following methods in order of preference

## Factorise

Use the quadratic formula
Complete the square
Before trying to solve, get it equal to zero!
If there is no common factor when factorising, look for two brackets.

$$
x^{2}+7 x+12=(x+3)(x+4)
$$

The two numbers in the brackets add to get the middle number in the expression and multiply to get the end number.

$$
\begin{aligned}
& x^{2}-5 x+4=(x-1)(x-4) \\
& x^{2}-36=(x-6)(x+6)
\end{aligned}
$$

Never cancel until you are multiplying everything top and bottom or until you have factorised!

$$
\frac{x^{2}+5 x}{x^{2}+6 x+5}=\frac{x(x+5)}{(x+1)(x+5)}=\frac{x}{x+1}
$$

Odd=2n+1 even $=2 n$
Sum of squares $=(2 n)^{2}+(2 n+1)^{2}=4 n^{2}+4 n^{2+} 4 n+1$ $=8 n^{2+} 4 n+1=4\left(2 n^{2}+n\right)+1$

As the 4 has been factorised out then the answer is 1 more than a multiple of 4

To factorise an expression look for the HIGHEST common factor of each term and put this outside the bracket. Inside the bracket must go what you multiply the highest factor by to get each term.
$5 x-15=5(x-3)$
$15 x^{3} y^{5}-6 x^{2} y^{3}=3 x^{2} y^{3}\left(5 x y^{2}-2\right)$

To find the nth term of a linear sequence (goes up by the same amount each time)
nth term $=$ (common difference) $\times \mathrm{n}+$ zero term
$3,8,13,18$ nth term $=5 n-2$
$90,74,58,42$ nth term $=-16 n+106$

Expand $(\sqrt{7}+3)(\sqrt{5}-4)$
Use FOIL to get

$$
\sqrt{35}-4 \sqrt{7}+3 \sqrt{5}-12
$$

Using Completing the square 1: Solving Quadratics

$$
\begin{aligned}
& x^{2}+6 x-7=0 \\
& (x+3)^{2}-9-7=0 \\
& (x+3)^{2}-16=0 \\
& (x+3)^{2}=16 \\
& x+3= \pm 4 \\
& x=-7,1
\end{aligned}
$$

Using Completing the square 2: minimum

What is minimum of $x^{2}+6 x-7$ ?
Complete the square to get $(x+3)^{2}-16$
Then minimum is -16 because the expression above is minimum when square is zero

So minimum is -16 when $x=-3$

In probability, if a question asks for who has the most accurate results then it is always the person who has performed more trials

Before solving a quadratic equation make it equal to zero

$$
\begin{gathered}
8^{\frac{2}{3}}=2^{2}=4 \\
27^{-\frac{2}{3}}=\frac{1}{27^{\frac{2}{3}}}=\frac{1}{9} \\
\left(\frac{8}{27}\right)^{\frac{2}{3}}=\frac{8^{\frac{2}{3}}}{27^{\frac{2}{3}}}=\frac{4}{9}
\end{gathered}
$$

If in any doubt

## Factorise

or use Pythagoras

The gradient product of two perpendicular lines is $\mathbf{- 1}$
Give the equation of the perpendicular to $y=2 x$ at $(0,3)$
Gradient of perpendicular $=-\frac{1}{2} \mathrm{Y}$ intercept $=3$
So equation is $y=-\frac{1}{2} x+3$

When comparing distributions always comment on the average and spread
e.g. Boys marks on average are better but the range is higher so the marks are more spread out; they are less consistent

## Parallel lines have the same gradient

Give the equation of the line passing through $(2,6)$
which is parallel to $y=2 x-3$
Gradient of parallel $=2$
So equation is $\mathrm{y}=2 \mathrm{x}+$ something
Because it passes through (2,6), when $x=2, y=6$
S0 6=4 + something so something =2
Equation is $\mathrm{y}=2 \mathrm{x}+2$
When y is inversely proportional to x the rule y

$$
=\underline{\mathrm{k}} \quad \text { exists. }
$$

When y is inversely proportional to $\mathrm{x}^{2}$ the rule y

$$
=\frac{\mathrm{x}_{2}}{\mathrm{x}^{2}} \text { exists. }
$$

| Example: $y$ is directly proportional to $x^{2}$. When $x=2, y=8$. What is $y$ when $x=7$ <br> The rule $\mathrm{y}=\mathrm{kx}^{2}$ exists. So $8=4 \mathrm{k}, \mathrm{k}=2$ <br> When $\mathrm{x}=7, \mathrm{y}=2 \mathrm{x}^{2}, \mathrm{y}=2 \mathrm{x} 49=98$ | Example: y is inversely proportional to $\mathrm{x}^{2}$. When $\mathrm{x}=2$, $y=1$. What is $y$ when $x=2$ ? <br> The rule $\mathrm{y}=\underset{\mathrm{x}^{2}}{\underline{\mathrm{k}}}$ exists <br> So $1=\mathrm{k} / 4$ so $\mathrm{k}=4$ <br> When $\mathrm{x}=2, \mathrm{y}=4 / \mathrm{x}, \mathrm{y}=2$. |
| :---: | :---: |
| Turning Recurring decimals into fractions $\begin{aligned} & x=0.423232323232323 \\ & 100 x=42.32323232323232 \\ & 99 x=41.9 \\ & x=\frac{41.9}{99}=\frac{419}{990} \end{aligned}$ | When turning recurring decimals into fractions, <br> Multiply by 10 if one repeating decimal <br> Multiply by 100 if two repeating decimals <br> Multiply by 1000 if three repeating decimals |
| To find a recurring decimal just divide $\frac{4}{9}=4 \div 9=0.4444444444444$ | If a question requires you to solve. but doesn't give an equation, use your initiative <br> Call whatever you start with $x$ and work from there |
| $\begin{aligned} & \frac{3}{x-1}-\frac{2}{x+1}=1 \\ & 3-\frac{2(x-1)}{x+1}=x-1 \end{aligned}$ <br> Solve $\begin{aligned} & 3(x+1)-2(x-1)=(x-1)(x+1) \\ & 3 x+3-2 x+2=x^{2}-1 \\ & x^{2}-x-6=0 \\ & (x-3)(x+2)=0 \\ & x=-2,3 \end{aligned}$ | $3.7{ }^{05}$ ON A CALCULATOR MEANS 370000 |
| If a question asks you to put an expression in the form $(x+a)^{2}+b$, this means <br> COMPLETE THE SQUARE! | Reciprocal means 1 over!! <br> So the reciprocal of 5 is $1 / 5$ <br> The reciprocal of $2 / 3$ is $3 / 2$ (turn the fraction upside down) |


| If asked for an irrational number use pi or a square root <br> e.g. an irrational number between 5 and 6 is pi - 1 OR the square root of 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 | If a sequence is non linear, it must have something to do with $\mathrm{n}^{2}$, so take the sequence $1,4,9,16,25$ off the original sequence and see what's left <br> So 2,3,6,11, 18 <br> Take off $1,4,9,16,25$ to get 1, -1, $-3,-5,-7$ <br> The nth term of this is $3-2 n$ <br> So the whole sequence is made up of $n^{2}-2 n+3$ |
| :---: | :---: |
| $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ <br> remember that you are dividing the whole thing by 2a!!! <br> $a=$ number in front of $x^{2}$ <br> $b=$ number in front of $x$ <br> $\mathrm{C}=$ constant | Solve $2 x^{2}-5 x-6=0$ using the quadratic formula. $\begin{aligned} x & =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(-6)}}{2(2)} \\ & =\frac{5 \pm \sqrt{25+48}}{4} \\ & =\frac{5 \pm \sqrt{73}}{4} \\ & =\frac{5 \pm 8.544}{4} \end{aligned}$ <br> So $\begin{aligned} x & =\frac{5+8.544}{4} & \text { or } & x \end{aligned}=\frac{5-8.544}{4}$ $=-0.89 \text { correct to } 2 d p$ |
| In SHOW THAT questions, Full answers are requiredSTATE THE OBVIOUS! <br> Don't miss out any steps!! | When estimating, a rule of thumb is to round all quantities to 1 SIGNIFICANT FIGURE. <br> Sometimes 2 sf is better but it would be made pretty obvious. $\text { e.g. } \frac{39.1}{0.77} \approx \frac{40}{0.8} \approx \frac{400}{8} \approx 50$ |

Don't get Highest common factor and least common multiple mixed up!!
e.g. 72 and 108

$$
\begin{aligned}
\mathrm{HCF} & =36 \\
\mathrm{LCM} & =216
\end{aligned}
$$

To write a number as a product of its prime factors, do as below!!
When estimating, a rule of thumb is to round all quantities to 1 SIGNIFICANT FIGURE.

Sometimes 2 sf is better but it would be made pretty obvious.
e.g. $\frac{39.1}{0.77} \approx \frac{40}{0.8} \approx \frac{400}{8} \approx 50$

$$
108=2^{2} \times 3^{3} \quad 72=2^{3} \times 3^{2}
$$

$108=2^{2} \times 3^{3}$
You can find HCF and LCM using these but IT IS NOT RECOMMENDED.

HCF - highest power of all common numbers used

$$
=2^{2} \times 3^{2}=36
$$

$\mathrm{LCM}=$ highest power of all common numbers used

$$
=2^{3} \times 3^{3}=216
$$

Don't round until the end of a question.
Try to use full answers throughout your calculations, then round appropriately at the end!!

## Graphical inequalities

When testing which side to shade, test a point on the appropriate side of the line before you shade!!

Be careful when adding quantities with standard form

## DO NOT ADD THE POWERS!

e.g. $7.5 \times 10^{3}+8.2 \times 10^{2}=7500+820=8320=8.32 \times 10^{3}$

You may be asked to use the quadratic formula without a calculator!!
Solve
$3 x^{2}+5 x-1=0$
$a=3, b=5, c=-1$
So $\mathbf{x}=\frac{-5 \pm \sqrt{5^{2}-(4 \times 3 \times-1)}}{2 \times 3}=\frac{-5 \pm \sqrt{37}}{6}$

To work out what percentage 230 is of 1460 do

$$
\frac{230}{1460} \times 100=15.8 \%
$$

Upper/Lower bounds example
Find max speed of Sue's journey if she travelled 25 miles ( 2 sf ) in 2.1 hours ( 1 dp )

Max speed $=$ max distance $/$ min time $=25.5 / 2.05=12.4 \mathrm{mph}$

Suitable degree of accuracy means
To same accuracy as quantities in the question OR
To 3 significant figures
$(\sqrt{5}+3)(\sqrt{5}-3)=5-3 \sqrt{5}+3 \sqrt{5}-9=-4$
Notice how multiplying expressions which differ only in the sign in the middle, the answer is RATIONAL!

So, we can say that
$\frac{1}{\sqrt{5}+3}=\frac{\sqrt{5}-3}{(\sqrt{5}+3)(\sqrt{5}-3)}=\frac{\sqrt{5}-3}{-4}=\frac{3-\sqrt{5}}{4}$


