Exterior + Interior $=180$

Total of exterior angles is 360

Area of triangle $=1 / 2 \times$ base \times height
REMEMBER TO MULTIPLY BY $1 ⁄ 2!!!$
Circumference of circle $=\pi \mathrm{d}$

b
($\mathrm{C}=\pi \mathrm{d}$ - Cherry pies -delicious!)

$$
\text { Area }=1 / 2 \mathrm{ab} \sin \mathrm{C}
$$

You must have 2 sides and angle between

If two shapes are congruent then they are exactly the same shape and size
e.g. congruent triangles will fit on top of each other

Angles at the circumference in the same segment of a circle are equal

Angle at centre is twice angle at circumference

Constructing a triangle given 3 sides

1. Draw one side
2. Use a ruler to set compasses to length of each of the other 2 sides in turn and draw arcs from ends of original side
3. join up ends of line to point where arcs intersect ALWAYS LEAVE CONSTRUCTION LINES IN!!

Sum of opposite angles in a cyclic quadrilateral is 180

So $\mathrm{a}+\mathrm{c}=180 \quad \mathrm{~b}+\mathrm{d}=180$

SINE RULE TO FIND A SIDE $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ TO FIND AN ANGLE $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	Triangles must meet one of four conditions to be congruent $\begin{aligned} & \text { SSS } \\ & \text { SAS } \\ & \text { ASA } \\ & \text { RHS } \end{aligned}$ Make sure you state clearly why sides or angles are the same e.g. corresponding, opposite, alternate
Equal vectors are parallel and of the same length. Parallel vectors are multiples of each other $\begin{gathered} \text { ie } a+b, 2 a+2 b \\ 2 a-b \text { and } 4 a-2 b \end{gathered}$	When translating, give your answer as a vector! 2 to the right 3 up is 3 to the left 4 down
A tangent is a straight line that touches a curve or circle just once!! Tangents are perpendicular to a radius drawn to the point where it meets the circle	If the length increases by a scale factor x , then the area increases by a scale factor x^{2} and the volume by scale factor x^{3} e.g. double all lengths, the area will quadruple and the volume will multiply by eight!

Volume of cylinder $=\pi r^{2} h$ (area of cross section x length)
Surface area of a cylinder $=\mathbf{2} \boldsymbol{\pi} \mathbf{r}^{\mathbf{2}}+\mathbf{2 \pi} \mathbf{r h}$ (imagine net- 2 circles and a rectangle with dimensions height by circumference)

Volume of sphere $=4 / 3 \boldsymbol{\pi r}{ }^{\mathbf{3}}$
On formula sheet
Surface area of sphere $=4 \pi r^{2}$
On formula sheet

3 lengths multiplied together- VOLUME
2 lengths multiplied together - AREA Lengths added together - LENGTH
e.g. a, b, c are lengths ab- AREA
abc- VOLUME
a + b- LENGTH

Volume of cone $=1 / 3 \pi r^{2} h$
On formula sheet
Curved Surface area of cone $=\pi r l$
On formula sheet
Total Surface area of cone $=\pi r^{2}+\pi r l$

volume $=(1 / 3) \pi r^{2} h$ total surface area $=\pi r(l+r)$

To work out the slant height \boldsymbol{l} of a cone, use Pythagoras

Ie radius $=3$, height $=4$
Then slant height is

$$
\sqrt{3^{2}+4^{2}}=5
$$

In similar triangles, sides are in proportion but angles are the same!!

Speed $=$ distance $/$ time Use formula triangle	
The sum of the angles of a regular polygon is 180($\mathrm{n}-2$) where n is number of sides	top of a shape is removed- a frustum is left to calculate the volume, work out the volume of the original cone and take away the part you remove!
Volume of pyramid $=1 / 3 \mathrm{Ah}$ When $\mathrm{A}=$ area of cross section h is perpendicular height	3 SIDES USE COSINE RULE 2 SIDES AND ANGLE BETWEEN USE COSINE RULE REST OF TIME USE SINE RULE!!
When enlarging by a negative scale factor draw lines from the corners of the shape through the centre of enlargement, then do the enlargement on the other side of the centre.	When reflecting, make sure you don't confuse $\mathrm{y}=-1$ and $\mathrm{x}=-1$. $\mathrm{Y}=-1$ is HORIZONTAL $\mathrm{X}=-1$ is VERTICAL

To construct a perpendicular bisector

1. Start with a line
2. Open compasses to about $3 / 4$ of line length
3. Centre compasses on each end of the line, from each end draw arcs on both sides of line
4. Join up points where arcs cross

Area of parallelogram = base x perpendicular (vertical) height.	Area of trapezium $=1 / 2(\mathrm{a}+\mathrm{b}) \mathrm{h}$ or average top and bottom then multiply by height
Here $\mathrm{m}=\mathrm{q}, \mathrm{r}=\mathrm{n}$ etc CORRESPONDING ANGLES $\mathrm{L}+\mathrm{n}=180, \mathrm{o}+\mathrm{q}=180$ COINTERIOR ANGLES $\mathrm{N}=\mathrm{q}, \mathrm{p}=\mathrm{o}$ ALTERNATE ANGLES $\mathrm{M}=\mathrm{N}$ OPPOSITE ANGLES	When describing a rotation, you must give the angle, direction centre of rotation MAKE SURE YOU ACTUALLY SAY ROTATION! e.g. rotation, 90 degrees anti clockwise centre $(0,0)$
When describing a reflection you must give the line the shape or curve is reflected in! e.g. reflection in the line $y=x$ Be careful: $y=2$ is line where y coordinate is 2 it is HORIZONTAL, not vertical.	To find a centre of rotation, USE TRACING PAPER!! Try a few points and see which work!

VERTICALLY OPPOSITE ANGLES ARE	$c^{2} \quad=a^{2}+b^{2}$
When describing an enlargement, you must give scale factor of enlargement and centre of enlargement. e.g. enlargement scale factor 2 , centre $(1,1)$	CORRESPONDING ANGLES ARE EQUAL
Bearings are From North 3 figures Measured clockwise	Angle in a semi circle from a diameter is a right angle
The angle that a tangent makes with a radius is a right angle	3 hours 20 minutes is not 3.2 hours It is 3 hours and $\frac{20}{60}$ of an hour which is $3 \frac{1}{3}$ hours or 3.3333333333333333333333333333 hours

valurne $=$ length \times width \times height

Volume of a cuboid $=$ length x width x height
Surface area of a cuboid $=2 l w+2 w h+2 l h$ (2 rectangles with each set of dimensions)

Is a triangle with sides $\sqrt{3}+1, \sqrt{3}-1$ and $\sqrt{8}$ right angled?

Well, does Pythagoras work?
$(\sqrt{3}+1)^{2}=3+2 \sqrt{3}+1=4+2 \sqrt{3}$
$(\sqrt{3}-1)^{2}=3-2 \sqrt{3}+1=4-2 \sqrt{3}$
$(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2}=8$ so hypotenuse would be
$\sqrt{8}$ so it is right angled

The alternate segment theorem; the angle between a tangent and a chord is equal to the angle in the alternate segment. So in diagram, $a=b$

In any Right angled Trig question

1. label the sides
2. decide which formula triangle to use (SOH CAH or TOA
3. Cover up what you need
4. Use a calculator

To construct an angle bisector

1. Start with the given angle
2. open compasses to radius shorter than arms of the angle
3. Centre compasses on point where arms meet and draw an arc on both arms
4. From both these arcs draw arcs that intersect
5. Join up point where arms meet to where arcs meet- this cuts angle in half!

In an isosceles or equilateral triangle you can use SOHCAHTOA if you split the original triangle into two RIGHT ANGLED triangles

 Area of a sector $=\frac{\theta}{360} \times \pi r^{2}$ Perimeter of sector $=$ $\frac{\theta}{360} \times \pi d+$ any radii/diameter required	To calculate a shaded area Good exam technique is to take away one area from another and find what's left!
Enlargement from a point All new points of shape must be scale factor times away from centre of enlargement e.g. scale factor 0.5 all points of new shape $1 / 2$ as far from centre of enlargement	To construct an angle of 60 1. Draw a line 2. centre compasses on end of line 3. draw arc which cuts line 4. centre compasses where arc meets line, draw another arc to cut first arc 5. join original point to point where arcs cross
AMBIGUOUS CASE of SINE RULE When given 2 Sides and angle not in between, there are always TWO ANSWERS TO ANY OTHER ANGLE These answers add up to 180 e.g. if you get 77 as an answer, 103 is correct also	To work out length of a line connecting $(3,7)$ and $(6,11)$ use PYTHAGORAS The line has moved 3 along and 4 up so Pythagoras gives us $\begin{aligned} & 3^{2}+4^{2}=25 \\ & l=\sqrt{25}=5\end{aligned}$
3D TRIG/PYTHAGORAS 1. IDENTIFY CORRECT RIGHT ANGLED TRIANGLE 2. REDRAW IN 2D 3. USE TRIG/PYTHAGORAS 4. DO 1-3 AGAIN IF NECESSARY!!	Finding the centre of enlargement Draw lines from new point through where it was before for each point Where they meet is centre of enlargement

When working with similar triangles where the triangles are 2 triangles in 1 triangle Draw new diagrams with the triangles separate	Constructing a triangle given 2 sides and angle between 1. Draw one side 2. use protractor to measure and draw angle at one end of this line 3. set compasses to length of other given side and draw an arc cutting the line you have drawn for angle 4. join up points where arc cuts line for angle and other end of starting line
Constructing the perpendicular at a point on a line 1. Start off with a point on a line 2. open compasses to a radius of 3 cm and centred on the point, draw arcs on either side 3. increase radius, centre compasses on the 2 points either side, so that they intersect 4. join original point to where arcs meet	Constructing the perpendicular from a point to a line 1. Start with a line and point not on a line 2. open compasses to 3 cm more than distance from point to line 3. centre compasses on point, draw arcs on line on either side of point 4. centre compasses on points where arcs cut the line, draw arcs on other side of line so they intersect 5. join original point and point where arcs cross
In diagrams, fill in everything you know before you start solving the problem! (e.g. all angles you know!)	In vectors if it asks you for a shape it is going to be a TRAPEZIUM or a PARALLELOGRAM trapezium (1 pair of parallel sides) a, 2a, 4a-b, 4a+b TRAPEZIUM Parallelogram (2 pairs of parallel sides) a, 2a, 3a-b, 6a-2b PARALLELOGRAM
If you have a vector b, and have to add b to it, just extend the original vector in the same direction by b . If you have a vector b, then $-b$ is the same vector in the opposite direction!	Lines are parallel if their vectors are a scalar multiple of each other, e.g. $5 a+b$ is parallel to $10 a+2 b$ or $2.5 a+0.5 b$ THIS MAY BE THE BEST WAY TO START A VECTORS QUESTION!!!
Given the sum of the interior angles of a regular polygon To find the number of sides DIVIDE BY 180, ADD 2	An Isosceles trapezium is one with 2 pairs of equal angles Its non parallel sides equal One line of symmetry

In a rhombus, All sides are equal Opposite sides are parallel Opposite angles are equal Diagonals are perpendicular bisectors of each other	 The equation of a circle $x^{2}+y^{2}=r^{2}$ Example: $x^{2}+y^{2}=4$ gives a circle about the origin radius 2
ANGLE OF DEPRESSION hariontal angle of depression	

